41,801 research outputs found

    A linear circuit analysis program with stiff systems capability

    Get PDF
    Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis

    Adaptive Parallel Iterative Deepening Search

    Full text link
    Many of the artificial intelligence techniques developed to date rely on heuristic search through large spaces. Unfortunately, the size of these spaces and the corresponding computational effort reduce the applicability of otherwise novel and effective algorithms. A number of parallel and distributed approaches to search have considerably improved the performance of the search process. Our goal is to develop an architecture that automatically selects parallel search strategies for optimal performance on a variety of search problems. In this paper we describe one such architecture realized in the Eureka system, which combines the benefits of many different approaches to parallel heuristic search. Through empirical and theoretical analyses we observe that features of the problem space directly affect the choice of optimal parallel search strategy. We then employ machine learning techniques to select the optimal parallel search strategy for a given problem space. When a new search task is input to the system, Eureka uses features describing the search space and the chosen architecture to automatically select the appropriate search strategy. Eureka has been tested on a MIMD parallel processor, a distributed network of workstations, and a single workstation using multithreading. Results generated from fifteen puzzle problems, robot arm motion problems, artificial search spaces, and planning problems indicate that Eureka outperforms any of the tested strategies used exclusively for all problem instances and is able to greatly reduce the search time for these applications

    Energy efficient engine. Volume 2. Appendix A: Component development and integration program

    Get PDF
    The large size and the requirement for precise lightening cavities in a considerable portion of the titanium fan blades necessitated the development of a new manufacturing method. The approach which was selected for development incorporated several technologies including HIP diffusion bonding of titanium sheet laminates containing removable cores and isothermal forging of the blade form. The technology bases established in HIP/DB for composite blades and in isothermal forging for fan blades were applicable for development of the manufacturing process. The process techniques and parameters for producing and inspecting the cored diffusion bonded titanium laminate blade preform were established. The method was demonstrated with the production of twelve hollow simulated blade shapes for evaluation. Evaluations of the critical experiments conducted to establish procedures to produce hollow structures by a laminate/core/diffusion bonding approach are included. In addition the transfer of this technology to produce a hollow fan blade is discussed

    Ceramic regenerator systems development program

    Get PDF
    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included

    Evaluation of advanced regenerator systems

    Get PDF
    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs

    Fabrication process development of SiC/superalloy composite sheet for exhaust system components

    Get PDF
    A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament

    Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.

    Get PDF
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class C? For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-tions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new character-izations for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount on advice is avail-able in the underlying machine model. This continues a recent line of research on proof systems with advice started by Cook and Kraj́ıček [6]
    corecore